工程造价专业教师岗位试讲内容

注意事项:

- 1. 每位考生试讲时间为 20 分钟;
- 2. 试讲内容: 统一指定1个教学内容并根据高职学生的特点进行试讲;
- 3. 试讲人员必须制作教案及PPT课件,课件不得透露个人信息。

教学内容: 土的基本性质(教材: 建筑施工技术)

教材封面

1. 教学内容 模块:土的基本性质

建筑施工技术

续表1-1

土的分类	土的名称	可松性系数		Tribe hast
		Ks	K's	开挖方法
三类土 (坚土)	中等密实黏土; 重粉质黏土; 砾石土; 干黄 土; 含碎(卵)石的黄土; 粉质黏土; 压实的 填筑土	1.24 ~ 1.30	1. 04 ~ 1. 07	主要用镐,少许用 锹、锄头,部分用 撬棍
四类土 (砂砾坚土)	坚硬密实的黏性土或黄土; 中等密实的含碎(卵)石黏性土; 粗卵石; 天然级配砂石; 软泥灰岩	1. 26 ~ 1. 32	1. 06 ~ 1. 09	用镐或撬棍,部分用 锲子及大锤
五类土 (软石)	硬质黏土;中密的页岩、泥灰岩、白垩土; 胶结不紧的砾岩;软石灰岩	1.30 ~ 1.45	1. 10 ~ 1. 20	用镐或撬棍、大锤, 部分用爆破
六类土 (次坚石)	泥岩;砂岩;砾岩;坚实的页岩、泥灰岩; 密实的石灰岩;风化花岗岩、片麻岩	1.30 ~ 1.45	1. 10 ~ 1. 20	用爆破方法,部分用 风镐
七类土 (坚石)	大理岩; 辉绿岩; 玢岩; 粗、中粒花岗岩; 坚 实的白云岩、砂岩、砾岩、片麻岩、石灰岩	1.30 ~ 1.45	1. 10 ~1. 20	用爆破方法
八类土 (特坚石)	安山岩;玄武岩;花岗片麻岩;坚实的细粒 花岗岩、闪长岩、石英岩、辉长岩、辉绿岩	1.45 ~ 1.50	1. 20 ~ 1. 30	用爆破方法

注: K, 一最初可松性系数; K, 一最终可松性系数。

1.1.3 土的基本性质

1. 土的组成

土一般由土颗粒(固相)、水(液相)和 空气(气相)三部分组成,如图1-1所示, 这三部分之间的比例关系随着周围条件的 变化而变化,三者相互比例不同,反映出土 RAI 的物理状态不同,如干燥、稍湿或很湿,密 实、稍密或松散。这些指标是最基本的物 理性质指标,对评价土的工程性质,进行土 的工程分类具有重要意义。

2. 土的物理性质

(1)土的天然密度和干密度

土的天然密度是指土在天然状态下单 位体积的质量,可按下式计算:

$$\rho = \frac{m}{V} \tag{1-1}$$

粒的质量,是填土压实质量的控制指标。 土的干密度可以用下式表示:

$$\rho_{\rm d} = \frac{m_{\rm s}}{V} \tag{1-2}$$

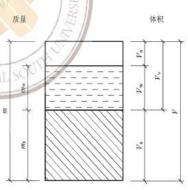


图 1-1 土的三相示意图

m—土的总质量 $(m = m_s + m_w)$ (kg); m_s —土中固体 顆粒 $\left(1-1\right)$ 的质量 $\left(kg\right)$; m_{\star} —土中水的质量 $\left(kg\right)$; V—土的总体积 $\left(V=V_{a}\right)$ 土的干密度,指单位体积土中固体颗 $^{+V_{\bullet}+V_{\bullet})(m^3)}; V_{\bullet}$ —土中空气体积 $(m^3); V_{\bullet}$ —土中固体颗 粒体积 (m^3) ; V_w —土中水所占的体积 (m^3) ; V_v —土中孔隙体 积 $(V_v = V_a + V_w)$ (m^3)

式中: ρ 为土的天然密度 (kg/m^3) ; ρ_d 为土的干密度 (kg/m^3) ;m 为土的总质量(kg); m_s 为固体颗粒的质量(kg);V 为土的体积 (m^3) 。

(2)土的含水量

土的含水量 W是指土中所含水的质量 m_w 与土的固体颗粒之间的质量 m_e 之比:

$$W = \frac{m_1 - m_2}{m_2} \times 100\% = \frac{m_w}{m_s} \times 100\% \tag{1-3}$$

式中: m_1 为含水状态时土的质量(kg); m_2 为烘干后土的质量(kg); m_w 为土中水的质量(kg)。

(3)土的孔隙比和孔隙率

孔隙比和孔隙率反映了土的密实程度。孔隙比和孔隙率越小土越密实。

孔隙比 e 是土的孔隙体积 V 与固体体积 V 的比值,用下式表示:

$$e = \frac{V_{\rm v}}{V} \tag{1-4}$$

孔隙率 n 是土的孔隙体积 V_v 与总体积 V 的比值, 用百分率表示:

$$n = \frac{V_{\rm v}}{V} \times 100\% \tag{1-5}$$

(4)土的可松性

天然状态下的土(原状土)经开挖后,其体积因松散而增加,即使经振动夯实,仍不能恢复到原来的体积,这种性质称为土的可松性。土的可松性程度用可松性系数表示:

$$K_{\mathbf{a}} = \frac{V_2}{V} \tag{1-6}$$

$$K_a' = \frac{V_3}{V} \tag{1-7}$$

式中: K_a 为土的最初可松性系数; K_a 为土的最终可松性系数; V_1 为天然状态下土的体积 (m^3) ; V_2 为土经开挖后的松散体积 (m^3) ; V_3 为土经回填压实后的体积 (m^3) 。

可松性系数对土方的调配, 计算土方运输量、填方量及运输工具都有影响, 尤其是大型 挖方工程, 必须考虑土的可松性系数。

【例1-1】 某工业厂房为钢筋混凝土条形基础,条形基础横截面面积为 $3.0\,\mathrm{m}^2$,地基土为干黄土,基坑深 $2.0\,\mathrm{m}$,底宽 $2.5\,\mathrm{m}$ 。若需开挖 $100\,$ 延米长基槽,请计算基槽土方挖土方量、填土量和弃土量。(不考虑放坡, $K_a=1.3$, $K'_a=1.05$ 。)

解: 挖土量: V₁ = 2 × 2.5 × 100 = 500 (m³)

条形基础体积: V2 = 3.0 × 100 = 300 (m3)

填土量: $V_0 = (500 - 300)/1.05 \times 1.3 = 247.6 (\text{m}^3)$

弃土量: V₄ = 500 × 1.3 - 247.6 = 402.4 (m³)

(5)土的渗透性

土的渗透性是指水在土体中渗流的性能,一般以渗透系数 k 表示。地下水在土中渗流速度可按达西定律计算:

$$v = ki \tag{1-8}$$

式中:v为水在土中渗流速度(m/d);k为土的渗透系数(m/d);i为水力坡度。

渗透系数 k 值反映出土透水性强弱, 它直接影响降水方案的选择和涌水量计算的准确

4 建筑施工技术

性,可通过室内渗透试验或现场抽水试验确定,一般土的渗透系数见表1-2。

表 1-2 土的渗透系数参考表

土的名称	渗透系数 k/(m・d ⁻¹)	土的名称	渗透系数 k/(m⋅d⁻¹)
黏土	< 0.005	中砂	5. 00 ~ 20. 00
粉质黏土	0.005 ~ 0.10	均质中砂	35 ~ 50
粉土	0. 10 ~ 0. 50	粗砂	20 ~ 50
黄土	0. 25 ~ 0. 50	圆砾砂	50 ~ 100
粉砂	0. 50 ~ 1. 00	卵石	100 ~ 500
细砂	1.00 ~ 5.00		

1.2 土方工程量计算及土方调配

1.2.1 基坑、基槽

1)基坑土方量的计算可近似按拟柱体(由两个平行的平面做上下底的多面体)体积公式来计算(图1-2):

$$V = \frac{H}{6} (A_1 + 4A_0 + A_2)$$
 (1-9)

式中:H 为基坑深度(m); A_1 为基坑上底面积(m²); A_2 为基坑下底面积(m²); A_0 为基坑中 截面面积(m²)。

2)基槽土方量可沿其长度方向分段后,按照上述同样方法计算(图1-3):

$$V_1 = \frac{L_1}{6} (A_1 + 4A_0 + A_2) \tag{1-10}$$

式中: V_1 为第一段的土方量 (m^3) ; L_1 为第一段的长度(m)。

然后将各段的土方量相加,即得总土方量:

$$V = V_1 + V_2 + \dots + V_n \tag{1-11}$$

式中: V_1 , V_2 , …, V_n 为各段的土方量(m^3)。

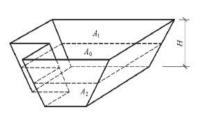


图 1-2 基坑土方量计算

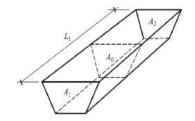


图 1-3 基槽土方量计算